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Abstract. Test-Driven Development (TDD) is a coding technique in which pro-
grammers write unit tests before writing or revising production code. We pre-
sent a process measurement approach for TDD that relies on the analysis of 
fine-grained data collected during coding activities. This data is mined to pro-
duce abstractions regarding programmers’ work patterns. Programmers, instruc-
tors, and coaches receive concrete feedback by visualizing these abstractions. 
Process measurement has the potential to accelerate the learning of TDD, en-
hance its effectiveness, aid in its empirical evaluation, and support project track-
ing. 

1   Introduction 

Test-Driven Development (TDD) [1-3] is a coding technique that relies on writing 
tests before implementation. The tests are written by the programmer using a unit 
testing framework such as JUnit [4]. Unit tests are incrementally added and all tests 
are periodically executed. Consequently, the program is regression tested as it is being 
developed.  

This paper presents an unobtrusive approach for improving the effectiveness of 
TDD based on an analysis of programmers’ coding and testing activities. First, we 
formalize the TDD process as a sequence of programming cycles, called a cycle trace. 
Cycle traces are visualized in different ways to obtain high-level information about the 
work patterns of programmers. This information in turn supports personal process 
improvement, education, empirical evaluation, and project tracking.  

A single programming cycle involves writing unit tests and production code, and 
ends with a successful execution of tests. The formalization of a programming cycle 
allows a high-level representation of the programmer’s coding and testing activities to 
be extracted from a record of low-level actions. These actions are captured using a 
third-party tool [5] that is integrated into the development environment. The logged 
actions track tool usage (JUnit) and changes to project resources; they are time-
stamped and augmented with basic code metrics. Once the cycle trace is extracted in 
tabular form, further abstractions are produced that zoom in on different aspects of the 
process followed by the programmer. These abstractions are presented as charts, 
which are visualized and interpreted.   
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Section 2 elaborates on the motivation of the work. Section 3 presents the approach. 
Section 4 presents the tabular representation of a cycle trace and discusses the inter-
pretation of various charts derived from this representation. Finally, Section 5 presents 
conclusions and discusses future work. 

2   Motivation  

Inevitably, programmers with different experience levels, preferences, reasoning proc-
esses, and established work patterns will apply TDD in different ways. With meaning-
ful feedback, programmers can correlate any changes in productivity and code quality 
with the way the technique is being applied. In turn, the awareness of the process fol-
lowed helps programmers discover rhythms and patterns that work best in a given 
context. In addition, process data can provide useful insight regarding the status of the 
project, both in terms of progress and in terms of product quality. Johnson et al. [6] 
stress the importance of process measurement in personal process improvement and 
project tracking, but not specifically in the context of TDD.  

Concrete, measurement-based feedback is also important from a pedagogical point 
of view. Although students who are exposed to TDD find it useful [7, 8] and obtain 
better productivity scores [8] and course grades [9], many students find TDD counter-
intuitive [10] and a majority find it more difficult to apply compared to conventional 
programming. In addition, students with higher skill ratings are able to leverage TDD 
better, and achieve more dramatic productivity improvements compared to students 
with lower skill ratings [8]. These findings imply that TDD may initially appear coun-
terintuitive to novices and the effective application of this technique demands both 
discipline and mastery. Therefore, coaches and instructors can take advantage of proc-
ess measurement to teach TDD to newcomers and to advance the skill level of veter-
ans.  

Discrepancies in empirical findings [8, 9, 11-14] [12] constitute a significant 
impediment to drawing generalized conclusions, and consequently, the findings 
remain valid only in the contexts in which they were produced. While several factors 
may account for the discrepancies (such as differences in populations, experiment 
tasks, teaching methods and materials, the technique with which TDD is compared), 
all of the studies mentioned suffer from a common pitfall of empirical software 
engineering: process conformance [8]. Process conformance is a threat to construct 
validity [15] related to the ability and willingness of subjects to follow a prescribed 
process. How do we know that the subjects apply TDD in the same way, or in the 
manner expected, both within and across studies? Although it is impossible to address 
process conformance in a fully objective manner, measurement should reduce the 
construct threat that it poses. Researchers often rely on self-assessment through 
questionnaires to gauge process conformance. Measurement can complement self-
assessment by allowing the comparison of the subjects’ process measures with 
idealized patterns. In addition, measurement is useful in assessing maturation 
(achievement of sufficient experience in the investigated technique), which is a 
concern in TDD studies: productivity and quality measures taken will be more 
meaningful and valid if the subjects gain reasonable mastery beforehand. Therefore 
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reasonable mastery beforehand. Therefore process measurement can play an important 
role in empirical evaluation, in terms of both enhancing the validity of the results and 
facilitating the comparison and aggregation of findings from multiple studies.  

3   Approach 

This section explains the process measurement approach taken. Section 3.1 formalizes 
the TDD process in terms of a cycle trace. Section 3.2 defines the high-level architec-
ture for data collection and analysis of our prototype implementation. This architecture 
relies on a third-party tool for data collection. Section 3.3 explains how to mine the 
process data collected to recognize cycle traces.  

3.1   Formalization of TDD Process  

We represent the TDD process as a sequence of programming cycles, called a cycle 
trace.  Each programming cycle in turn is composed of more elementary blocks repre-
senting three distinct types of activities. A TestCode block is defined as a contiguous 
sequence of coding activities that involves only writing or revising tests. A TestCode 
block is typically followed by a ProductionCode block, which is a contiguous se-
quence of activities that involves only writing or revising production code. The Test-
Code-ProductionCode sub-cycle can be repeated several times, but usually a Produc-
tionCode block is immediately followed by the execution of a series of tests. A 
contiguous sequence of test executions is a TestExecution block. A TestExecution 
block that is (100%) successful (represented by a green bar in JUnit) indicates the end 
of a programming cycle. An unsuccessful, or failing, TestExecution block (repre-
sented by a red bar in JUnit) marks the end of a sub-cycle, which we call a CycleEle-
ment. Thus, a single programming cycle is composed of several CycleElements, the 
last of which ends with a successful TestExecution block.  

Formally, a cycle trace is defined by the following regular expressions:  

CycleElement(x) = (TestCode | ProductionCode)
+
  TestExecution(x) 

ProgrammingCycle = CycleElement(fail)
*
  CycleElement(pass) 

CycleTrace = ProgrammingCycle
+
 

Here x ∈ {fail, pass} differentiates between failing and successful TestExecution 
blocks and CycleElements. Note that the regular expressions describe a generic proc-
ess that is not strictly TDD-compliant. For example, they recognize variant cycles 
where the programmer writes the tests after the production code. Such non-compliant 
cycles should be occasionally expected in TDD, but they are normally not persistent if 
TDD is faithfully applied. The regular expression pattern also recognizes more legiti-
mate variants such as pure refactoring [16] cycles during which the programmer does 
not add new functionality, but improves the design by typically revising the test code 
or the production code. Whereas the cycle trace of a faithful TDD programmer will 
contain a large number of short cycles, the traditional programmer who follows a 
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waterfall-like process will have a cycle trace that contains a fewer number of long 
cycles. 

The formalization assumes that unproductive or dead-end cycles always conclude 
with the restoration of a former stable state of the code. In a stable state, all tests must 
run 100% successfully. Once a stable state is achieved, the programmer verifies this 
condition, thereby delimiting an unproductive or dead-end cycle with a successful 
TestExecution block.  

3.2   Architecture for Data Collection and Analysis 

To recognize cycle traces, we need to collect fine-grained data regarding the pro-
grammer’s coding and testing activities. For this purpose we chose Hackystat [5, 17], 
a lightweight tool available from the University of Hawaii’s Collaborative Software 
Development Laboratory. Hackystat client sensors are available for several develop-
ment environments including Eclipse [18]. Once the sensors are installed and config-
ured on the programmer’s computer, they work transparently in the background to 
collect the data. The Hackystat sensor periodically sends the locally cached data to a 
Hackystat server, where it is stored permanently and can be retrieved on demand in 
XML form.  

To generate a representation of the cycle trace for a given time period, the client 
runs the analysis tool locally. The analysis tool downloads the associated logged data 
from the Hackystat server and generates an Excel spreadsheet containing a tabular 
representation of the client’s cycle trace as well as the associated charts. 

3.3   Mining Hackystat Data 

Hackystat sensors collect multiple types of data from the client. We take advantage of 
the data types Activity, UnitTest and FileMetric. Hackystat logs changes to project 
artifacts in Activity data. Unit test executions are logged in UnitTest data along with 
the test results. FileMetric data contain static structural metrics on project artifacts. 

Figure 1 shows how Hackystat data is aggregated to recognize programming cycles. 
The blocks that make up the cycles (TestCode, ProductionCode and TestExecution 
Block) are composed of a set of related cycle entries, where each cycle entry has a 
duration (Active Time) and an associated project artifact (Active File). For TestCode 
and ProductionCode blocks, the project artifact is obtained by cross-referencing the 
test case names recorded in the Hackystat UnitTest data with the file names recorded 
in the Hackystat Activity data. The project artifacts (i.e., test classes) of a TestExecu-
tion block are obtained from UnitTest data alone. The duration of the cycle entry is 
estimated using Hackystat timestamps. When no Hackystat entries are logged for a 
project artifact for a certain period of time (e.g., two minutes), the excess time is re-
corded as “Idle Time,” which is excluded from “Active Time” to account for interrup-
tions.  

“T/P Ratio” tracks the amount of test code produced relative to the amount of 
production code. This metric is calculated using the UnitTest and FileMetric data. 
Since a cycle entry may affect the size of a project artifact, T/P Ratio is recomputed at 
the end of each cycle based on the timestamp of the last modification from the 
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of each cycle based on the timestamp of the last modification from the FileMetric 
data.  

The number of tests attempted and the number of tests passed from UnitTest data 
together identify successful and failing test executions.  

 

Cycle Block 

Cycle Entry 

Hackystat Data File Activity UnitTest FileMetric 

Active/Idle Time Active File T/P Ratio # Tests Attempted/Passed 

TestExecution block TestCode block Prod.Code block 

Cycle 
Element Cycle 

 

Fig. 1. Recognizing programming cycles using Hackystat data types. 

Aggregation of cycle entries into blocks proceeds in a bottom-up fashion. Since test 
executions delimit CycleElements, TestExecution blocks are formed first using Activ-
ity and UnitTest data types. If there is no Activity entry whose timestamp is between 
the timestamps of two UnitTest entries, then the two UnitTest entries are grouped into 
one TestExecution block; otherwise, they belong to different TestExecution blocks. 
Once the TestExecution blocks are identified, remaining activities can be grouped into 
ProductionCode and TestCode blocks by comparing their timestamps with the delimit-
ing timestamps of the TestExecution blocks. Finally CycleElements and Cycles are 
constructed based on the sequencing of the blocks. The output of this procedure is 
illustrated in the next section. 

4   Analysis of Cycle Traces  

In this section, we present the output of our prototype analysis tool for Eclipse [18], 
called TestFirstGauge. We also show with several examples how the output can be 
interpreted to support personal process improvement, learning, process conformance, 
and project tracking. The data used in the examples are collected during various pro-
gramming tasks from an experienced programmer who was learning TDD. Section 4.1 
explains the tabular representation of a cycle trace generated by the tool. Section 4.2 
illustrates the analysis of cycle time and T/P Ratio using two different charts. Finally, 
section 4.3 discusses testing effort analysis.   

4.1   TDD Report 

Figure 2 illustrates the cycle trace report generated by the TDD analysis tool. 
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Tests Active Time Idle Time 
Cycle Activity Active File 

Attempted Passed (sec) (sec) 

T/P 
Ratio 

19 Test Code TestActionSet.java     17.77 0 0.37
  Prod Code ActionSet.java     13.65 120  
  JUnit Run TestActionSet 2 1 0.14    
    TestTransition 4 4 0.02    
  Test Code TestActionSet.java     1.57 0  
  JUnit Run TestActionSet 2 2 0.08    
    TestTransition 4 4 0.04    
  Cycle Total 33.27 120  

20 Test Code TestActionSet.java     16.38 0 0.37
  JUnit Run TestActionSet 2 2 0.06    

             
    TestFileMetric 1 1 0.03     

100 Prod Code Controller.java     163.78 2640 0.32
    ActionSet.java     0.00 0  
    TransBridge.java     94.75 61440  
  Test Code TestController.java     34.46 960  
  JUnit Run TestController 3 3 0.39    
  Cycle Total 293.38 65040  

… 

 

Fig. 2. Sample TDD report. 

The first column shows the cycle number. The second column gives the type of the 
cycle entry, which depends on the block to which the cycle entry belongs. (The entries 
labeled “JUnit Run” belong to TestExecution blocks.) The third column lists the pro-
ject artifacts associated with each cycle entry. For JUnit runs (TestExecution blocks), 
the numbers of tests attempted and passed are given in the next column. The column 
labeled “Active Time” gives the duration of the cycle entry (excluding idle time). Last 
column provides the (cumulative) ratio of test code to production code. The total dura-
tion of each cycle is indicated in the row “Cycle Total”. Whereas Cycle 19 is a TDD 
cycle, Cycle 100 is a non-TDD cycle because it begins with a ProductionCode rather 
than a TestCode block.  

4.2   Cycle Time and T/P Ratio Analysis 

Figure 3 shows an example of the cycle active time chart. We can use this chart to 
support learning, assess process conformance and support project tracking.  

Ideally, with faithful application of TDD, the chart should have short cycles of 
comparable length, representing a steady progress. Cycles from 40 to 100 are typical 
and conform to the ideal pattern. The spikes towards the beginning (long cycles) are 
possibly due to the initial TDD learning curve. The spikes towards the end correspond 
to integration-related tasks during which TDD was not applicable.  

With regard to project tracking, persistent long cycles could be indicative of design 
complexities, which make adding new functionality difficult. Such patterns can be 
used to identify opportunities for refactoring to improve the design. 

Figure 4 depicts the cycle pattern associated with another programming task. The 
x-axis denotes cumulative cycle time measured in minutes. Long cycles now appear as 
large gaps between consecutive vertical bars, each of which marks the beginning of a 
new cycle. In the middle section, the programmer performs a series of large refactor-
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ings. Towards the end, a steadier pattern is gradually reached as evidenced by increas-
ingly tightly spaced vertical bars.  The height of each bar indicates the ratio of test 
code to production code (T/P Ratio) at the end of the associated cycle. We see that 
during the refactoring activity, the T/P Ratio increased: the programmer added more 
tests most likely to better support the design changes. Towards the end, the T/P Ratio 
gradually reverted back to its previous level. 
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Fig. 3. Cycle Active Time. 
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Fig. 4. Cycle Pattern with T/P Ratio. 
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4.3   Testing Effort Analysis 

Analysis of testing effort is particularly useful for project tracking.  
Figure 5 shows historical test code effort (bottom bars) relative to production code 

effort (top bars) as a function of cycle number. Test execution time is excluded from 
this analysis. Two explanations are possible for the absence of testing activity in the 
middle section of the chart. The first explanation is that the programmer could have 
neglected testing. In this case the chart can be used to look up the production code 
classes associated with the middle cycles in the TDD report to identify sections of the 
code as the focus of subsequent coverage analysis. The second explanation is that the 
middle section corresponds to refactoring activities during which no tests were added 
or modified. Again the TDD report can be analyzed further to verify this hypothesis.    
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Fig. 5. Testing effort. 

4.4   Cycle Time Distribution 

Beck states [2] (page 83) that his JUnit usage (minutes between successive JUnit runs) 
has a particular U-shaped distribution. However, how often JUnit is run provides little 
information about how quickly a TDD programmer completes a programming task 
within a single cycle and how fine-grained the tasks are themselves. To gauge their 
speed and the granularity of the incremental process followed, TDD programmers 
should be more interested in the distribution of the duration of the programming cycles 
than the distribution of time between successive JUnit runs.  

Figure 6 illustrates the cycle time distribution for a typical TDD session. The chart 
has been produced after the programmer has acquired experience with TDD. As ex-
pected with proper application of TDD, smaller cycles exhibit a higher frequency than 
larger cycles. As the mastery of TDD increases, the programmer should get better at 
task decomposition and follow an increasingly finer incremental process. Conse-
quently, the head of the distribution should get fatter while the tail thins out.  
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Fig. 6. Cycle time distribution. 

5   Conclusions  

Measurement supports process improvement not only at project and organizational 
levels, but also at a personal level. We presented an approach based on process meas-
urement to support Test-Driven Development, an incremental coding technique that 
demands discipline. The goal of the approach is to: 

• increase the mastery of TDD by providing concrete visual feedback to program-
mers regarding their past work patterns and rate of progress,  

• facilitate teaching by allowing coaches to demonstrate target patterns and identify 
slippages, 

• aid in project tracking by identifying sections of code that are candidates for closer 
scrutiny, and  

• improve empirical evaluation by controlling process conformance. 

At the centre of the approach is the concept of a programming cycle, which leads to 
the formalization of the process underlying TDD. A tool then extracts traces of such 
cycles from programmers’ activity logs, and produces various time-series charts that 
are easy to interpret. We provided examples of how to interpret a subset of these 
charts. The tool generates additional charts that were not discussed in this paper.  

Our prototype tool works with Eclipse, JUnit, Microsoft Excel and Hackystat. The 
tool is freely available under GPL upon contacting the authors.  

Although the espoused benefits of our TDD process measurement approach in re-
search settings are well founded, its impact on education and personal process im-
provement is speculative at this point. Future efforts will focus on further improve-
ments to the tool and on the evaluation of the approach in different settings. Work is 
already under way. The tool will be tested in an industrial case study of TDD and in 
future replications of the TDD experiment mentioned in [8]. Regarding additional 
analysis capabilities, we have made progress in two fronts: incorporation of test cover-
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age information into cycle traces using a commercial tool and automatic recognition of 
refactoring cycles.  
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