
THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

THE ECONOMICS OF SOFTWARE
DEVELOPMENT BY PAIR PROGRAMMERS

HAKAN ERDOGMUS

National Research Council, CANADA

LAURIE WILLIAMS
North Carolina State University, USA

ABSTRACT

Evidence suggests that pair programmers—two programmers working
collaboratively on the same design, algorithm, code, or test—perform
substantially better than the two would working alone. Improved quality,
teamwork, communication, knowledge management, and morale have been
among the reported benefits of pair programming. This paper presents a
comparative economic evaluation that strengthens the case for pair
programming. The evaluation builds on the quantitative results of an empirical
study conducted at the University of Utah. The evaluation is performed by
interpreting these findings in the context of two different, idealized models of
value realization. In the first model, consistent with the traditional waterfall
process of software development, code produced by a development team is
deployed in a single increment; its value is not realized until the full project
completion. In the second model, consistent with agile software development
processes such as Extreme Programming, code is produced and delivered in
small increments; thus its value is realized in an equally incremental fashion.
Under both models, our analysis demonstrates a distinct economic advantage of
pair programmers over solo programmers. Based on these preliminary results,
we recommend that organizations engaged in software development consider
adopting pair programming as a practice that could improve their bottom line.
To be able to perform quantitative analyses, several simplifying assumptions
had to be made regarding alternative models of software development, the costs
and benefits associated with these models, and how these costs and benefits are
recognized. The implications of these assumptions are addressed in the paper.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

INTRODUCTION

Both anecdotal and statistical evidence [1-4] indicate that pair programming, the
practice whereby two programmers work side-by-side at one computer
collaborating on the same design, algorithm, code or test, is highly productive.
One of the programmers, the driver, has control of the keyboard/mouse and
actively implements the design, program, or test. The other programmer, the
navigator, continuously observes the work of the driver to identify tactical
(syntactic, spelling, etc.) defects and also thinks strategically about the direction
of the work. On demand, the two programmers brainstorm any challenging
problem. Because the two programmers periodically switch roles, they work
together as equals to develop software. Many have used the pair programming
technique for decades, and several publications in the mid-late 1990s extolled its
benefits [1, 5, 6]. More recently, many impressive anecdotes among those
practicing the Extreme Programming (XP) software development methodology
[7-11] greatly aroused awareness of pair programming as a technique to improve
quality, productivity, knowledge management, and employee satisfaction [3, 4,
12].

In 1999, a formal experiment was run to investigate the effectiveness of the
pair programming practice. The experiment was run with advanced
undergraduates at the University of Utah. Sometimes issues of external validity
are raised when empirical software engineering studies are conducted with
students. These issues arise because projects undertaken within a semester in
artificial settings need not deal with matters of scope and scale that often
complicate real, industrial projects. However, academic settings are still
valuable as test-beds. They have the potential to provide sufficient realism at
low cost while allowing for controlled observation of important project
parameters [13].The University of Utah empirical study focused on the
interactions between and the overall effectiveness of two programmers working
collaboratively relative to programmers working alone. Issues of complexity and
scale are not significant inhibitors in such a study.

Software development methodologies, or processes, are prescribed,
documented collections of software practices (specific methods for software
design, test, requirements documentation, maintenance, and other activities)
required to develop or maintain software. Williams developed the Collaborative
Software ProcessSM (CSPSM) methodology as her dissertation research [14].
CSP is based on Watts Humphrey’s well known Personal Software ProcessSM
(PSPSM) [15], but is specifically designed to leverage the power of two

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

programmers working together. The University of Utah experiment assessed the
effectiveness of solo programming using the PSP vs. the effectiveness of pair
programmers using the CSP. These two processes were specifically chosen to
best isolate the effects of pair programming; essentially all the other practices
followed by the programmers were identical. The experiment yielded
statistically significant differences between the performance of pair
programmers and of individual programmers [3, 4, 14, 16]. In this paper, these
experimental results are used to perform a quantitative analysis of the economic
feasibility of pair programming. The findings complement and strengthen the
benefits of pair programming that have been reported previously.

The economic feasibility of pair programming is a key issue. Many
instinctively reject pair programming because they believe code development
costs will double: why should two programmers work on each task while a
single programmer can do the job? If the practice is not economically feasible,
managers simply will not permit its use. Organizations decide whether to adopt
process improvements based on the bottom-line implications of the outcomes.
Naturally, the goal of software firms is to be as profitable as possible while
providing their customers with the highest-quality products as quickly and
cheaply as possibly.

The economic feasibility analysis of the pair programming practice centers
on how it fares relative to solo programming under a given value realization
model. We assume a product realizes value when clients or end users are
delivered a working product. Even a partial, but working, product can provide
benefits. We will compare pair programming with solo programming first based
on simple performance metrics, and then considering these metrics under two
different value realization models. In the latter case, the analysis utilizes Net
Present Value (NPV) [17] as the basis for comparison. This approach per se is
not novel. Economic models based on NPV have previously been suggested to
evaluate the return on software quality and infrastructure initiatives; for
examples, see [18-22]. Our analysis stands out in that it relies on a breakeven
analysis instead of a traditional NPV analysis.

ASSUMPTIONS

The economic feasibility of pair programming is assessed by focusing on

the performance of a single pair of programmers with respect to the performance
of a solo programmer. The comparison is made under the assumption that both
the paired programmers and the solo programmer are undertaking the same

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

programming task. Whether the solo or pair programmers work in isolation or
are part of a larger team is thus immaterial at this level of comparison.

Our economic assessment makes a number of other simplifying
assumptions. Some of these assumptions abstract away from extraneous factors
over which the programmers normally have no control, while others reduce the
number or limit the behavior of the underlying variables in order to make a
quantitative comparison possible:

• Cost accumulation. Labor cost is the only kind of cost considered.

All costs are recognized instantly as they are accrued. One-time
overhead costs, such as the pair jelling time [4], are disregarded.
(Pair jelling is the time period in which programmers learn to
work effectively in a pair, to give and to accept objective
suggestions, and to communicate during development.) Since
we compare a single programming pair to a single programmer
working alone, the pattern of expenditures for labor costs is
linear in each case: costs are accrued continuously and at a
constant rate.

• Work schedule. Programmers work a fixed number of work hours
per year. Work hours are evenly distributed within a calendar
year. During work hours, programmers never remain idle and
exclusively engage in development activities, either writing new
code or fixing defects in previously deployed code.

• Defect recovery process. The post-deployment defect discovery
process is assumed to be perfectly efficient. This implies that
after a piece of code has been deployed, all defects are found
instantly. We assume that post-deployment defects are found by
the clients or users of the deployed code, and not by the
programmers. Since programmers are never idle during work
hours, the defect discovery time irrelevant from the
programmers’ perspective. All discovered defects are repaired
at a fixed rate by the original programmers, but the average
speed with which they are repaired depends upon the
development process used.

• Value realization. A linear relationship is assumed between the
amount of code deployed by the programmers and the value
generated through the development activity. Deployed code

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

instantly realizes value when it is defect-free. Code may be
deployed in arbitrarily small increments.

• Ranges and baseline values of model parameters. Whenever
necessary and reasonable, statistics previously reported in the
literature are used to determine the ranges and baseline values of
model parameters.

ABSTRACTION OF THE DEVELOPMENT PROCESS

The two development processes that underlie the comparison are the Personal
Software Process (PSP), which is designed for individual programmers, and the
Collaborative Software Process (CSP), which is designed for pair programmers.
The CSP practices are intentionally based on PSP practices, with the exception
of pair programming. As a result, we consider that our comparison of PSP and
CSP is essentially a comparison between solo and pair programming. The shared
practices of the two processes, therefore, are not discussed here.
 In what follows, we refer to a single programmer or a team of programmers
simultaneously working on a piece of code as a work unit. We represent the
development process in terms of two descriptive and three empirical parameters.
The size of the work unit uniquely differentiates the CSP from the PSP.

MEASURES OF TIME AND EFFORT:
Elapsed time refers to the delta between the times of occurrence of two events.
Compressed time refers to elapsed time minus overhead and resting time. Effort
refers to equivalent compressed time for a single programmer. Thus if a work
unit is composed of a single programmer, effort equals compressed time. If it is
composed of a pair of programmers, effort equals twice the compressed time.
 We measure elapsed time in years, compressed time in hours, and effort in
person-hours. From now on, hours always refer to productive hours, that is, time
spent exclusively on development activities excluding overhead and resting
time. Labor costs are calculated based on effort, or productive person-hours.
 If a programmer works on average 7.5 productive hours per day, 5 days a
week, and 49 weeks a year, he or she works a total of 1,837.5 person-hours in a
calendar year. In this case, 1,837.5 person-hours of effort are equivalent to
1,837.5 hours of compressed time, which in turn are equivalent to one year of
elapsed time. However, for a pair of programmers, 3,675 person-hours of effort
are equivalent to 1,837.5 hours of compressed time, or a year of elapsed time.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

DESCRIPTIVE PARAMETERS:
The two descriptive parameters of the development process are:

• Size of the work unit (N, persons). The number of programmers in a
work unit. N equals 1 for a solo programmer (hereby, a soloist), and 2
for a pair of programmers (hereby, a pair). Thus N = 1 if the work unit
consists of a soloist following the PSP. N = 2 if the work unit consists
of a pair of programmers working in tandem on the same task
following the CSP.

• Value realization model. The pattern in which a work unit delivers a
finished or partial product, and accordingly generates value. This
parameter will be discussed later in the paper.

The work unit (N) and the value realization model are the only independent
parameters in the process model. The values of the empirical parameters all
depend on N.

EMPIRICAL PARAMETERS:
Before we introduce the empirical parameters, we need to define how we
measure the output (denoted by ω) of a work unit. A work unit, depending on
how efficient it is, is able to produce only a certain amount of output within a
given time. Conversely, a work unit, again depending on its efficiency, requires
a certain amount of time to produce a given amount of output. In the latter case,
the output targeted by the work unit can be thought of as the size of the of the
development task undertaken. In other words, it may be thought of as an
external requirement on the work unit.
 In software development, output is an elusive concept to represent and
measure. Output is, by and large, a subjective notion whose interpretation is the
cause of much controversy. To be meaningful, the measure of output should
correlate with how much technical functionality is provided by the software
artifact produced. Yet there is no universally accepted way of counting technical
functionality. We use the most widely adopted and easy to compute measure,
lines of code (LOC). However, LOC is just a proxy. Some argue that LOC is not
an appropriate measure of output in that LOC may not always correlate well
with the amount of functionality delivered. More abstract measures, such as
function points, have been suggested as alternatives, but these are not suitable in
our analysis because of their coarse and non-uniform granularity.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

 The unit of two empirical parameters, productivity and defect rate, depend
on the adopted unit of output. If LOC is substituted by another output measure,
the units of productivity and defect rate will change accordingly.
 Having defined output, the three empirical parameters of the development
process are:

• π: productivity (LOC/hour). The average hourly output of the work
unit, measured in compressed time.

• β: defect rate (defects/LOC). The average number of defects per unit of
output (per LOC) produced by the work unit.

• ρ: rework speed (defects/hour). The speed at which the work unit
repairs defects in a piece of previously deployed code, after the defects
have been discovered. Also measured in compressed time.

The values of these three parameters are determined empirically based on
past research studies and statistics reported in the literature. The chosen values
are primarily for illustration purposes, and represent information available at the
time of writing. The actual values could be different, and they would most likely
be both project- and skill-dependent. The specific results reported here are
sensitive to the empirical parameters to varying extents, however we believe that
the general conclusions are much less so under the assumptions of the analysis.
A sensitivity analysis is performed at the end of the paper.

PRODUCTIVITY :
According to a study by Hayes and Over [23], the average productivity rate of
196 developers who took PSP training was 25 LOC/hour. This figure will be the
chosen value of π for N = 1 (soloist). Note that the developers in the PSP
training course were essentially free from normal business interruptions. As a
result, this figure may seem high when compared with other productivity figures
based on monthly rates in which programmers’ total output is compared with
their total time (including meetings, absences, vacation, etc.). However, the
Hayes and Over productivity figure is appropriate for our analysis as we use
compressed time to measure productivity.

The University of Utah study [4, 14] reported that a pair spends on average
only 15% more effort (in total person-hours) than a soloist to complete the same
programming task. This result however was not statistically significant, with
approximately a 40% probability of the observed difference in the mean being
due to chance. Although further analysis was not performed on the data set to
verify whether the two-tailed t-test employed was powerful enough to detect the

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

difference at the specified alpha level in the first place, anecdotal evidence [2, 7,
10] is supportive of no significant total effort penalty for pair programmers after
pair jelling has occurred [4, 24, 25]. In our firsthand observations, there is a
one-time jelling cost of between one to 40 hours the first time a programmer
pairs. Subsequently, there is another short 30-60 minute jelling period when a
programmer pairs with a different programmer for the first time; during this time
the programmers learn each other’s strengths and weaknesses relative to their
own.

We err on the conservative side by assuming that the observed 15%
difference is real. With this assumption, in a single person-hour, each
programmer of a pair produces an average of 25/(1.15) = 21.74 LOC, and
together they produce twice this volume, or 43.48 LOC. Thus, benchmarked
relative to the baseline PSP productivity level of 25 LOC/hour, the value of π
for N =2 (pair) is taken to be a conservative 43.48 LOC/hour.

These pair productivity rates are within 20-30% of those recently reported
by a technology company in India that used both pair and solo programming in a
Voice-over-IP project. This project reported a pair-to-soloist productivity ratio
of 2.8 (3300 LOC/month for solo programmers versus 9600 LOC/month for pair
programmers based on a 60-hour work week) [26]. Note that this ratio is much
higher compared to the more conservative ratio of 1.73 adopted here.

DEFECT RATE :
According to Jones [27], code produced in the US has an average of 39 raw
defects per thousand LOC (KLOC). This statistic is based on data collected from
such companies as AT&T, Hewlett Packard, IBM, Microsoft, Motorola, and
Raytheon, with formal defect tracking and measurement capabilities. According
to the same reference, on average, 85% of all raw defects are removed via the
development process, and 15% escape to the client.

Together the two pieces of statistics suggest an average post-deployment
defect rate of (0.039)(0.15) = 0.00585 defects/LOC (or 5.85 defects/KLOC).
The number is consistent, though on the low side, with data from the Pentagon
and the Software Engineering Institute, which indicate that typical software
applications contain 5-15 defects per KLOC [28]. We adopt the average 0.00585
defects/LOC as the baseline soloist value of β, for N = 1.

During the empirical study of pair programming vs. solo programming,
Williams [3, 4, 14, 16] observed that at the end of the project, code written by
pairs on average passed 90% of the specified acceptance tests compared to code
written by soloists, which passed on average only 75% of the same test suite.
The results were statistically significant at an alpha level of less than .01.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

Assuming that the test suite provided full coverage, this result suggests a pair-to-
soloist post-deployment defect rate ratio of .4 (corresponding to an improvement
of 1 − .4 = 60%). Thus benchmarked relative to the soloist (N = 1) baseline
value of 0.00585 defects/LOC, the adopted value of β for a pair (N = 2) is
(0.00585)(0.4) = 0.00234 defects/LOC.

The adopted soloist value of β is close to the average defect rate of 0.00534
defects/LOC reported by the Indian company mentioned previously [26].
However, for pairs, the company reported defect rates that are an order of
magnitude lower than the adopted β value of 0.00234 defects/LOC, both during
unit testing (at 0.0002 defects/LOC) and during acceptance testing (at 0.0004
defects/LOC), corresponding to an improvement of over 90% over soloists. In
the initial analysis, we will err on the conservative side again by adopting the
figures yielded by the University of Utah study. Later in the paper, sensitivity
analysis will show how an improvement as dramatic as the one reported by the
Indian company affects the results.

REWORK SPEED :
A study of a set of industrial software projects from a large telecommunications
company [29] reported that each discovered (post-deployment) defect required
an average of 4.5 person-days, or 33 person-hours of subsequent maintenance
effort or rework (based on a 7.5-hour workday). This statistic is consistent with
data reported by Humphrey [15]. Based on this observation, the value of rework
speed ρ for a soloist (N =1) is taken to be 1/33 = 0.0303 defects/hour. Again this
figure serves as our baseline value for computing the pair rework speed.

No data is available regarding the effect of pair development on rework
activities. We will assume pairs can achieve rework productivity gains
comparable to those reported for the initial development activities. Under this
assumption, the estimated rework speed ρ for a pair (N = 2) will be
(2)(0.0303)/1.15 = 0.0527 defects/hour. This assumption would especially be
valid for agile development processes [30, 31] such as Extreme Programming
[8], where no clear separation exists between rework and development activities.

INITIAL ABSTRACT MODELS:
For now we leave the value realization model unspecified since it will not be
needed for the initial comparison. Thus the initial abstract models that represent
the two development processes are:

Solo = {N = 1, π = 25.0, β = 0.00585, ρ = 0.0303},

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

Pair = {N = 2, π = 43.478, β = 0.00234, ρ = 0.0527}.

Note that pair jelling costs [4, 24, 25] have been excluded in this model. At
this point, we have no viable empirical data beyond the anecdotes discussed
above regarding jelling costs. Exclusion of jelling costs injects a bias into the
analysis in favor of pair programming. If jelling cost is a one-time cost, this bias
should not be significant. However if it is recurring due to pair rotation or
turnover, it should be factored into the productivity parameter to eliminate the
bias. Fortunately, productivity is the least sensitive of the three empirical
parameters. This helps reduce the bias in the analysis.

THE BASIC COMPARISON MODEL

The basic comparison model consists of three metrics: efficiency, unit effort,
and unit time.

EFFICIENCY:
Efficiency, ε, is defined as the percentage effort spent on developing new code,
exclusive of the effort expended on rework. Given a productivity rate of π, the
effort required to produce ω lines of code of output is given by:

 := Epre
ω N

π

This quantity specifies the initial development (or pre-deployment) effort.
Initial development is followed by rework (or post-deployment) effort once the
code has been deployed (fielded, or delivered to the client). Rework effort, Epost,
refers to the maintenance effort expended to repair runaway defects after a piece
of new code has been deployed and all such defects have been found.

 := Epost
ω β N

ρ

Here ωβ is the total number of defects and ρ is the speed of rework. Effort
is always adjusted to the work unit by multiplying it by the work unit’s size N.

Total effort, Etot, is the sum of the initial development and rework efforts:

 := Etot
ω N () + ρ β π

π ρ

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

Efficiency, ε, is then the ratio of the initial development effort Epre to the
total effort Etot. It is thus given by:

 = ε
ρ

 + ρ β π

The percentage effort spent on rework then equals 1 − ε, or:

β π
 + ρ β π

It may seem counterintuitive at first that efficiency and productivity are
inversely related. Why should increasing productivity reduce efficiency? It is
because under a constant defect rate, the number of post-deployment defects
increases with output. Therefore, all other parameters remaining same, an
increase in productivity results in a higher number of total post-deployment
defects, increasing the rework effort, and ultimately decreasing the percentage
effort spent on initial development.

Some development techniques allegedly increase productivity while
reducing the defect rate at the same time. For example, agile development
processes claim to achieve this [8]. If such is the case, simultaneously, a
reduction in βπ and an increase in ρ will result, and consequently efficiency will
increase.

UNIT EFFORT :
Unit effort, UE, is the total effort, in person-hours, required by a work unit to
produce one unit (LOC) of defect-free output. UE is calculated by dividing total
effort Etot by the total output ω corresponding to that effort. Expressed in terms
of productivity and efficiency, unit effort is given by:

 := UE
N

π ε

UNIT TIME:
Unit time, UT, is the compressed time, in hours, required by a work unit to
produce one unit (LOC) of defect-free output.

Unit time is calculated by dividing unit effort UE by the size of the work
unit N. Expressed in terms of productivity and efficiency, unit time equals:

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

 := UT
1

π ε

RESULTS OF BASIC COMPARISON MODEL:
Table 1 compares the two abstract models Solo and Pair with respect to the
metrics efficiency, unit effort, and unit time. In each row, the cell in bold
typeface indicates the more favorable alternative with respect to the
corresponding metric. The model Pair fairs considerably better in all of the three
metrics, yielding nearly 100% improvement in efficiency, over 40% reduction in
unit effort, and over 70% reduction in unit time.

Table 1. Comparison of the models Solo and Pair based on performance metrics.

 Model
Metric

Solo Pair

Efficiency (ε) (decimal %) .172 .340
Unit Effort (UE) (person-hours/LOC) .233 .135
Unit Time (UT) (hours/LOC) .233 (= UE) .068

THE ECONOMIC COMPARISON MODEL

A software development activity incurs costs as it accumulates labor hours

and realizes value as it delivers new functionality to the clients or the users of
the end product. The activity is economically feasible when the total value it
creates exceeds the total cost it incurs. We assume that the net value generated
depends on four factors: (1) the activity’s labor cost; (2) the value that the
activity earns commensurate with the output it produces; (3) the way in which
this earned value is recognized, or realized, through a specific pattern of
deploying the output produced; and (4) the discount rate r used to bring the
underlying cash flows to the present time. The economic comparison model
takes into account the effect of each of these factors.

LABOR COST:
Programmer labor is often the most important cost driver in software
development. Let Cpre and Cpost denote the average labor cost of initial
development and rework, respectively, per person per hour, including salary and

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

benefits. We will assume that initial development and rework are performed by
the same work unit, resulting in the same constant value for both variables.
Thus:

Cpre = Cpost= C

In the economic comparison model, we account for labor costs as such costs
are incurred, in a similar fashion a business using accrual-based accounting
would recognize expenses when they are transacted. However, to avoid
choosing an arbitrary period for transacting labor costs, we assume instead that
these costs are accrued in a continuous manner as a series of infinitesimally
small transactions.

DISCOUNT RATE:
When the costs and benefits of an activity are spread over a long period of time,
the economic analysis must take into account, in addition to their magnitude, the
specific times at which these costs and benefits are recognized as concrete cash
flows. To maximize net economic value, the activity should realize benefits as
early as possible and incur costs as late as possible.
 We assume that the resulting cash flows are discounted at a fixed
continuously-compounded annual rate r from the time of their occurrence
relative to the start time of the activity. The various interpretations of the
discount rate—for example, in terms of opportunity cost, time value of money,
project risk, minimum required rate of return, or any combinations thereof—are
beyond the scope of this paper. We refer the unfamiliar reader to the standard
capital budgeting literature; for example, see the relevant chapter in Ross [17].

EARNED VALUE:
Earned value (EV) is a well known quantitative project tracking method [15, 20,
32, 33]. With EV tracking, a project’s expected outputs or resources are
estimated and scheduled for delivery or consumption, respectively. As the
project progresses, it earns value relative to this delivery/consumption schedule,
so that at completion, the project’s earned value equals the total estimated output
or the total estimated consumption. For example, a project with a target to
produce 100 units of a product would have a current EV of 20 after producing
20 units. With a target of 200 units, after producing the same amount of units, it
would have an EV of 10. In both cases, every unit produced increases the
accumulated EV by a fixed amount: by one unit in the former case, and by half a
unit in the latter. Let this constant incremental value be denoted by V. We refer

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

to V, the value earned by one unit of output, as the unit value. In our case, V
corresponds to the average currency value of a single line of code, expressed in
$/LOC. Then earned value corresponding to a total output of ω LOC is given
by:

EV = V ω

 According to our economic model, not every labor hour expended earns
value. Effort, such as rework, that does not increase output or result in new
functionality does not earn any value. Therefore our interpretation of earned
value considers rework effort as wasted effort. Consequently, only projects that
are 100% efficient earn extra value for each labor hour expended.

VALUE REALIZATION:

In software development, earned value is not necessarily the same as
realized value. The distinction between the two is important. Earned value can
be seen more as an expression of potential value commensurate with effort spent
given the productivity level of the development team. That value however may
never be realized, for example if the project fails to deliver a useable artifact.
Potential value is realized when an artifact leaves production and is delivered to
its client. This can be accomplished in small increments or in large chunks over
the course of a software development project. The rate at which realized value
accumulates depends on the frequency with which working code fragments are
deployed to the client. Hence although value can be earned on a continuous
basis, possibly it is not realized until much later.

The concept of realized value may also be explained in reference to the two
alternative methods of income recognition seen in the Generally Accepted
Accounting Principles [34]. In cash-based accounting, income from services
rendered is recognized when services are paid for; while in accrual-based
accounting, income from services are recognized when services are delivered.
Thus the concept of realized value admits an accrual-based view of value
recognition rather than a cash-based view: new code is developed, deployed, and
reworked in increments of different size, and as such, realized value is
accumulated at the same pace as obligations regarding these increments are
fulfilled.

In the economic analysis, we consider two alternative value realization
models: single-point delivery (value realized at the end) and continuous
(incremental) delivery (value realized incrementally on a continuous basis).

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

 These two models are located at the opposite extremes of the value
realization spectrum. The contrast helps demonstrate the impact of the pattern
of value realization on the economic feasibility of a process. Most real projects
fall somewhere in between these two theoretical extremes. In contract-based
development, the terms of the contract dictate the actual value realization
pattern. New contracting models with novel compensation structures are being
put forward for software projects; for example, see Beck and Cleal [35]. The
model we use in our analysis can easily be adapted to a particular compensation
model.

The Single-Point Delivery Model
With traditional, waterfall-like [36] models of software development, code
delivery to the client often occurs in one large chunk. The scope of the
development activity is fixed and finite. Hence, value is realized in a single step
at the very end. We will refer to this value realization model as single-point
delivery, or deferred realization.

The single-point delivery model is illustrated in Figure 1. The horizontal
dimension denotes elapsed time with respect to a single project. Here, we
ignore the time it takes for the client or users to discover and report the defects
in the deployed code. Therefore in this simple model, the rework phase
immediately follows the development phase, and once all post-deployment
defects are repaired, the project is deemed complete. In Figure 1, time τ marks
project completion. It also marks the time of the realization of value
accumulated over the course of the project. During rework, from τpre to τ, the
project does not earn any extra value.

 Development
τpre τ

Start Deploy Complete

Rework

Figure 1: Single-point delivery model of value realization.

Incremental Delivery Model
At the opposite end of the spectrum is the incremental delivery model. In this
model, the scope of the development activity need not be predetermined, and the

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

responsibility of the work unit may extend to perpetuity. New code is
continuously developed, deployed, and reworked in small increments.
Development of new code and rework of deployed code are intertwined in a
never-ending cycle. Consequently, value is realized in small increments as
micro-obligations involving small chunks of new code are gradually fulfilled.
 The generic incremental delivery model is illustrated in Figure 2. Again, the
horizontal dimension represents elapsed time. The ticks correspond to
deployment points at which the work unit delivers new working code. In the
idealized version of the incremental delivery model, the distance between two
subsequent deployment points approaches to zero, giving rise to a truly
continuous process. We will consider this idealized version only, which we refer
to as the continuous delivery model. The idealized model avoids the selection of
an arbitrary increment size.

Start

Rework …
Deploy DeployDeploy DeployDeploy

Rework ReworkReworkRework

Figure 2: Incremental delivery model of value realization.

DEFECT DISCOVERY:
We define a (post-deployment) defect as a runaway fault that the work unit was
unable to discover and remove prior to the deployment of a piece of code. These
defects are rather discovered by the client of the code, be that the end user or a
separate quality assurance team. The efficiency of the defect discovery process
depends on two components: latency and coverage.

Latency refers to the elapsed time between the deployment of a software
artifact and the discovery of a defect by the client of the artifact. Coverage refers
to the number of defects reported by the client or users in relation to the total
number of defects remaining in the code base.

In practice, the discovery of defects by the client is neither instantaneous
nor complete. For example, Jones [27] states that in large industrial projects,
more than half of the runaway defects have a latency of one year, while total
coverage four years after deployment hovers around 97%. In contrast, agile
software development processes, such as Extreme Programming and SCRUM
[37], that rely on short cycles, continuous testing, and frequent client feedback,
would tend to have low latency and high coverage.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

The economic analysis performed here assumes a perfectly efficient defect
discovery process: one with zero latency and full coverage. This allows us to
abstract away from factors outside the control of the work unit.

Zero-latency is of little concern. First, latency does not affect the work
unit’s obligation. Second, we assume that the work unit always has work to do.
Thus if at a specific time, the programmers are not able to work on a specific
piece of code, they won’t remain idle, but rather will undertake another
development task, whether from the same or from another project. Therefore,
the results of an analysis performed with zero-latency assumption should remain
valid when averaged across several staggered development activities with non-
zero latency.

Low coverage reduces the obligation of the work unit: fewer reported
defects amount to less rework effort for the work unit. However, coverage is
also a common environmental factor: it should affect pairs and soloists in the
same manner. The effect of less-than-perfect coverage may be accounted for by
converting actual defect rates into coverage-adjusted, effective defect rates. If
coverage is constant, its impact, if any, can therefore be analyzed through a
sensitivity analysis of the actual defect rates.

DEVELOPMENT OF THE ECONOMIC COMPARISON MODEL

NET PRESENT VALUE:
The Net Present Value of an investment activity is the difference between

the present value (PV) of the activity’s benefits and the present value of its
costs. This definition is adapted to the current context by representing the
benefits in terms of realized value, accrued in a specific pattern, and the costs in
terms of labor expenses, accrued continuously. With this adaptation, NPV
becomes sensitive to changes in the unit value V.
 Figure 3 shows how NPV varies as V varies in the neighborhood of 5% to
30% of the unit labor cost C for a pair under the single-point delivery model.
NPV is represented by the vertical axis. Output is plotted in KLOCs. The labor
cost C is set to 50 and a work schedule with hy = 1837.5 hours/year is assumed.
V varies from 5% to 30% of the labor cost C.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

Figure 3: NPV as a function of unit value V and output ω for a fixed annual

discount rate r = 10%.

 In the figure, the NPV = 0 plane splits the V-Output space into feasible
(NPV > 0) and infeasible (NPV < 0) regions. The range of V is chosen to
emphasize the behavior of NPV in the neighborhood of this feasibility plane.
Note that the slope of the NPV curve changes drastically along the output axis as
V varies. Because of this sensitivity, our interest is not in NPV per se. We need a
derived metric whose value can be used to rank two alternatives independent of
a particular choice of unit value. Breakeven Unit Value meets this need.

BREAKEVEN UNIT VALUE—A RELATIVE RETURN-ON-INVESTMENT METRIC:
Breakeven Unit Value is the threshold value of V above which the NPV is
positive:

BUV = min{ V | NPV ≥ 0 }

BUV is determined by solving the equation NPV = 0 for V. Recall that V is
measured in $/LOC, and represents the fixed increase in earned value per each
additional unit of output produced.

A small BUV is better than a large BUV. As its BUV increases, the
development activity becomes less and less worthwhile because higher and
higher margins are required to move the NPV into the feasible region. Think of
BUV as a relative measure of return on investment.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

BREAKEVEN UNIT VALUE RATIO (BUVR):
Using BUV ratios, it is possible to make a one-step comparison between two
development processes and gauge their relative feasibility. Define BUV Ratio
(BUVR) as the ratio of the BUV of the model Solo to the BUV of the model
Pair under a common value realization model.

 = BUVR
BUV solo

BUV pair

Values of BUVR greater than unity indicate an advantage for pairs; values
smaller than unity indicate an advantage for soloists. As this ratio increases, the
advantage of pairs over soloists also increases.

The metric BUVR makes the comparison not only independent of V, but
also of the hourly labor cost C. BUVR depends on:

• the empirical parameters of the models Solo and Pair,

• the value realization model, and

• in the case of the single-point delivery model, the discount rate and the
total output (or the size of the development task undertaken).

SUMMARY OF THE ECONOMIC COMPARISON:
Table 2 summarizes the results of the economic comparison. The process
models Solo and Pair are compared under two opposite value realization models
with respect to the BUVR metric. The two value realization models considered
are:

1. the single-point delivery model and
2. the idealized version of the incremental delivery model, or the

continuous delivery model.
In Table 2, r denotes the annual discount rate. Projects of higher risk usually

require the use of a proportionately higher discount rate. Note that we apply the
same discount rate for both negative cash flows (costs) and positive cash flows
(benefits). In practice, costs and benefits may be subject to different levels and
types of risk, possibly warranting the use of different discount rates. A detailed
discussion of the relationship between risk, return, and discount rate is beyond
the scope of this paper, but can be found in an introductory corporate finance
text; for example, see [17].

In the single-point delivery model, BUVR depends both on the discount rate
and the total output produced by the development unit. In general, as the

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

discount rate and output increase, BUVR, hence the advantage of the pair over
the soloist, increases (with a slightly positive second partial derivative). In the
continuous delivery model, the BUVR is constant and greater than unity,
representing a steady advantage for pairs.

The limit behaviors are described by the rows “ω → ∞” (development
continues to perpetuity) and “r → 0” (discount rate is zero). The final row of the
table specifies whether the pair or the soloist fares better under each of the two
value realization models.

Overall, a pair operating under the continuous delivery model yields the
lowest (thus best) BUV since this model combines the improved efficiency and
productivity of the pair with the advantage of incremental value realization. This
observation highlights the impact of the value realization model on the
economic analysis.

The findings are however sensitive to the three empirical parameters π
(productivity), β (defect rate), and ρ (rework speed) to varying degrees. The
most sensitive empirical parameter is the defect rate, followed by the rework
speed, and finally the productivity. Sensitivity is discussed in more detail later in
the paper.

Table 2. Economic comparison of models Solo and Pair based on BUVR.

 BUVR Behavior

 Value Realization
Condition Model

Single-Point
Delivery

Continuous
Delivery

Discount rate (r) increases BUVR increases
r → 0 BUVR → 2.24
Output (ω) increases BUVR increases
ω → ∞ BUVR → ∞

BUVR = 1.73

Overall better model Pair Pair

BENEFITS AND COSTS IN SINGLE-POINT DELIVERY:
We now explain the elements of the economic analysis for the single-point
delivery model in more detail. When value is realized only at the end of a
development activity, NPV can be written as:

:= NPV 1 − DRV TDC 1

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

 Here DRV denotes Deferred Realized Value and TDC Total Discounted
Cost. Each of these quantities is discussed in detail below.

Deferred Realized Value
Deferred Realized Value (DRV) is the accumulated earned value at the end of
the development activity expressed in present value terms. DRV is given by:

 := DRV V ω e
()−r τ

where Vω = EV is the total deferred earned value; τ is elapsed time to
completion; and r is the fixed, continuously compounded annual discount rate.
The factor e(-rτ) brings the deferred EV to the present time.
 Expressing τ in terms of output ω and the empirical parameters, DRV
becomes:

 := DRV V ω e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

−
r ω

π ε hy

where π is the process (work unit) productivity (LOC/hour), ε is the process
(work unit) efficiency (unitless), and hy describes the work schedule in terms of
the total number of productive labor hours in a calendar year. The factor hy
converts compressed time in hours to elapsed time in years based on a fixed
work schedule. When needed, we assume a work schedule with hy = 1,837.5
hours per year, based on a 5-day workweek, 7.5-labor-hour workday, and 49-
workweek year.

An optimal value of output exists that maximizes the deferred realized
value. This value of output is defined by the root of the partial derivative of
DRV with respect to ω:

 =
∂
∂
ω

DRV 0

Maximum DRV is given by:

 = DRV max

V π ε hy e
()-1

r

Note that maximum DRV increases with efficiency, but decreases with discount
rate. Since V, hy, and, r are constant, the maximum DRV ratio of a soloist to a

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

pair is simply given by (πsolo εsolo)/(πpair εpair) = UTpair/UTsolo, yielding a constant
value of 0.29. Therefore, the maximum value realizable under the single-point
delivery model by a soloist is less than one third of the maximum value
realizable by a pair. The maximum DRV ratio is thus independent of unit value
and discount rate.

Marginal Cost
Marginal cost is the cost accumulated by a work unit per unit of elapsed time.
For the single-point delivery model, marginal cost before and after deployment
will be different if hourly labor cost for initial development and rework are
different. We will first calculate a total discounted cost based on this general
case, and then use the assumption Cpre = Cpost to simplify the result.

Considering a period of τ years in elapsed time and a process (work unit)
efficiency of ε, the Marginal Initial Development Cost in dollars per year is
given by:

 := mC pre

E ε Cpre

τ
= hy N ε Cpre

Similarly, the Marginal Rework Cost in dollars per year is:

 := mCpost

E () − 1 ε Cpost

τ
 = −hy N ()− + 1 ε Cpost

The total discounted cost can now be calculated from these two
components.

Total Discounted Cost
We assume that labor costs are accrued on an ongoing basis. This is a reasonable
assumption since corporations incur payroll cash flows in regular discrete
installments, for example, on a weekly, bi-weekly, or monthly basis. We
discount labor costs as soon as they are incurred. In reality, these costs are
recognized in a discrete manner, but when the time horizon is sufficiently long,
a continuous model provides a frequency-independent approximation.

With these considerations in mind, the Total Discounted Cost for the model
Solo under single-point delivery is obtained by summing the marginal costs
accumulated over infinitesimally small intervals, both before and after
deployment:

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

 := TDC 1 + d⌠

⌡
⎮⎮⎮

0

τpre

mCpre e
()−r t

t d⌠

⌡
⎮⎮⎮

τpre

τ

mCpost e
()−r t

t

Here mCpre dt and mCpost dt represent initial development and rework costs,
respectively, accumulated over a small interval dt in the neighborhood of t. The
factor e

()−rt
brings the small cash flow that occurs over dt to the present time by

discounting it over the period t. The variable of integration, t, represents elapsed
time.

When Cpre = Cpost = C, the sum of the two integrals reduces to:

hy N C ()− + − + + 2 ε e
()−r τpre

ε e
()−r τ

e
()−r τpre

ε e
()−r τ

r

By substituting

 = τ

ω
π ε hy

 = τpre
ω

π hy

in the previous equation, it is possible to express TDC in terms of total output ω,
efficiency ε, and productivity π.

BUV in Single-Point Delivery
Under the single-point delivery model, BUV depends on both output (ω) and
discount rate (r). It increases as either of these variables increases. Figure 4
shows the BUV for the model Pair under single-point delivery, for a fixed labor
cost of C = $50/hour and a work schedule with hy = 1837.5 hours/year. BUV
increases with output as well as with discount rate as a result of deferred value
realization under the single-point delivery model, where higher and higher profit
margins are required as total time to completion increases.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

Figure 4: Breakeven Unit Value for the model Pair under single-point delivery for a

fixed hourly labor cost and work schedule. Output is in KLOCS.

When the discount rate is zero, BUV in the single-point delivery model is

given by:

 = lim

 → r 0
BUV 1

() − + 1 2 ε 2 ε2 N C
π ε

The limit yields a constant minimum BUV both for a pair and for a soloist.

BUVR in Single-Point Delivery
The economic advantage of pairs over soloists is evident in the single-point
delivery model. BUVR is at least 2.24 when the discount rate is zero; the BUV
for a soloist is at least 124% higher than the BUV for a pair. The pair’s
advantage increases as output or discount rate increases. The effect is illustrated
in Figure 5, which plots Solo to Pair BUVR as a function of total output for
different discount rates under single-point delivery. Pairs accumulate costs
faster, but more than compensate for this by realizing the deferred total value
earlier. The bigger the development task or the higher the discount rate, the
more pronounced is the advantage of pairs over soloists.

As Figure 5 demonstrates, BUVR is not very sensitive to changes in the
discount rate although BUV itself is (Figure 4). Taking the ratio smoothes the
impact of discount rate out to a certain degree. For example, even at high values
of output (for large projects), a six-fold increase in the discount rate increases

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

the BUVR by less than 19%. Below an output of 5 KLOC (for small projects),
BUVR increases by less than 6%.

Figure 5: BUVR of the model Solo to the model Pair under single-point delivery as

a function of output for different discount rates.

BENEFITS AND COSTS IN CONTINUOUS DELIVERY:
We now explain the elements of the economic analysis for the continuous
delivery model in more detail. For the continuous delivery model, NPV is
expressed as:

:= NPV∞ − IRV TDC ∞

 Here IRV denotes Incremental Realized Value, and TDC again denotes
Total Discounted Cost.

Marginal Value Earned
Marginal Value Earned (MVE) is the average value earned by the work unit per
additional unit of elapsed time (measured in $/year). Given a cutoff time of τ,
again measured in elapsed time, MVE equals:

 := MVE =
EV
τ

V ω
τ

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

Representing output ω in terms of elapsed time eliminates the variable τ,
allowing MVE to be expressed as a function of unit value V, productivity π and
efficiency ε:

:= MVE V π ε hy

Incrementally Realized Value
Incrementally Realized Value (IRV) is the total value earned over a given time
period. Since value is realized, or recognized, as it is earned in the continuous
delivery model, it is discounted continuously as earned. If τ is a time period
measured in elapsed time, then IRV accumulated over τ is given by:

 := IRV d⌠
⌡
⎮⎮

0

τ

MVE e
()−r t

t

As usual, the variable of integration, t, is measured in elapsed time.
Expressed in terms of efficiency ε and productivity π, IRV equals:

 := IRV −
V π ε hy () − e

()−r τ
1

r

As the cutoff time τ approaches infinity, IRV asymptotically approaches its
maximum value. This limit represents the value of operating a single work unit
to perpetuity under a constant discount rate. Maximum IRV is given by:

 = IRV max

V π ε hy

r

As with maximum Deferred Realized Value, maximum IRV increases with
efficiency and decreases with discount rate.

With the current values of empirical parameters, pairs achieve 53% higher
maximum IRV than soloists. Since the discount rate (r), the unit value (V), and
the number of labor hours in a calendar year (hy) are the same for both soloists
and pairs, the pair-to-soloist ratio of maximum IRV is given directly by the pair-
to-soloist ratio of efficiency.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

Marginal Cost
Marginal cost was defined as the incremental cost of development and rework
per additional unit of elapsed time. This definition is the same as it was in the
single-point delivery model, but its computation is slightly different here. Since
under continuous delivery, initial development and rework activities are
intertwined, marginal cost, mC∞, can be written in terms of total effort E as:

 := mC∞

 + E ε Cpre E () − 1 ε Cpost

τ

When Cpost = Cpre = C, marginal cost simply reduces to:

 = mC∞ hy N C

Total Discounted Cost
As is the case in the single-point delivery model, under the continuous delivery
model, labor costs are accrued and discounted continuously to calculate the
TDC. If the variable t represents elapsed time, TDC can be written as the
following integral:

 := TDC ∞ d⌠

⌡
⎮⎮⎮

0

τ

mC∞ e
()−r t

t

After substituting the marginal cost with the corresponding term, the above
definite integral reduces to:

 := TDC ∞ −
hy N C () − e

()−r τ
1

r

Maximum Discounted Cost
The Maximum Discounted Cost of a work unit under the continuous delivery
model at a constant discount rate is the asymptotic value of TCD incurred by the
work unit to perpetuity. This limit is given by:

 = TDC ,∞ max

hy N C
r

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

A pair consistently incurs twice the maximum discounted cost incurred by a
soloist. This is because the ratio of maximum TDC is determined solely by N, as
the labor cost (C) and the discount rate (r) are assumed to be the same for both
practices.

BUV in Continuous Delivery
When both value realization and cost accumulation are continuous and
incremental, BUV’s dependence on output and discount rate is broken in the
continuous delivery model. Generically, BUV under the continuous delivery
model is given by:

 := BUV ∞

N C
π ε

This equation yields, for a fixed labor cost of C = $50/hour, a Breakeven
Unit Value of 11.65 for the model Solo and 8.96 for the model Pair.

BUVR in Continuous Delivery
The BUVR in continuous delivery is given by:

 = BUVR ∞

Nsolo πpair εpair

Npair πsolo εsolo

The value of BUVR is thus constant at 1.73 under this model of value
realization, representing a steady 42% (1 − 1/1.73) advantage for pairs over
soloists. Note that this advantage is independent of the discount rate and total
output.

SENSITIVITY ANALYSIS OF THE ECONOMIC COMPARISON MODEL

Figure 5 illustrated the sensitivity of the BUVR to the two exogenous
parameters—namely the discount rate (r) and output (ω). In the single-point
delivery model, BUVR was found to be mildly sensitive to both discount rate
and output. In the continuous delivery model, BUVR is constant.

How sensitive are the findings to the three endogenous, empirical
parameters, productivity (π), rework speed (ρ), and defect rate (β)? Since these
parameters are descriptive of the development process and the work unit, they

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

warrant further investigation. BUVR turns out to be most sensitive to changes
in defect rate, but less so to changes in rework speed. It is least sensitive to
changes in productivity. Table 3 provides further details on the sensitivity
analysis.

Table 3. Sensitivity of BUVR to changes in empirical parameters.

 BUVR Sensitivity

 Value Realization Model

% improvement
in value of empirical
par. (x% improvement =
Pair value x% more favorable
than Solo value)

Single-Point
Delivery

Continuous
Delivery

Productivity (π)
 From 0% to 80% Mild Mild
 From 80% to 400% Insignificant Mild to Insignificant
 At UofUtah Benchmark (74%) Insignificant Mild
Rework speed (ρ)
 From 50% to 200% Moderate Mild
 From 200% to 400% Mild Insignificant
 At UofUtah Benchmark (74%) Moderate Mild
Defect rate (β)
 From 5% to 20% Moderate Moderate
 From 20% to 85% Significant Significant
 In neighborhood of 85% Insignificant Significant
 At UofUtah Benchmark (60%) Significant Significant

 In Table 3, we characterize the sensitivity of BUVR to an empirical
parameter over a given range as insignificant if the partial derivative of BUVR
with respect to the percentage increase in that variable over the range in question
is hovering around zero; mild if the absolute value of the partial derivative is
consistently less than unity, but above zero; moderate if the absolute value is
hovering around unity; and significant if it is consistently greater than unity. The
columns in italics typeface indicate the sensitivity of the empirical parameters at
the improvement levels achieved by pairs relative to soloists according to the
data from the University of Utah study. These values serve as benchmark
improvement levels for the purposes of the sensitivity analysis.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

 In Figures 6 through 8, for the production of the plots, we maintained the
discount rate and the output at the arbitrary values of 0.1 (10%) and 7.5 KLOC,
respectively. Staying within reasonable ranges, varying these exogenous
parameters only marginally displaces the curves and does not affect the
sensitivity results with respect to the three empirical parameters.

SENSITIVITY OF BUVR TO IMPROVEMENT IN PRODUCTIVITY:
Figure 6 illustrates the sensitivity of the findings to the level of improvement in
productivity (π) achieved by pairs over soloists. The percentage improvement is
expressed relative to the previously-adopted benchmark productivity value of 25
KLOC/hour, the productivity value used in the model Solo.
 Both comparisons are initially mildly sensitive to improvement in
productivity. The sensitivity decreases as the productivity improvement
increases. Around the benchmark improvement level of 74% (dotted line), the
effect is insignificant for single-point delivery and mildly significant for
continuous delivery.

SENSITIVITY OF BUVR TO IMPROVEMENT IN REWORK SPEED:
Figure 7 illustrates the sensitivity of the results to the level of improvement in
rework speed (ρ) achieved by pairs over soloists. The percentage improvement
is expressed relative to the adopted benchmark rework speed value of 0.0303
defects/hour, again the value used in the model Solo in the main part of the
analysis.

Overall, BUVR is mild to moderately sensitive to rework speed. Both
comparisons exhibit a diminishing sensitivity to improvement in rework speed.
In single-point delivery, a marginal increase in the rework speed of pairs relative
to that of soloists provide a matching benefit up to an improvement level of
around 200%, which we characterize as moderate sensitivity. At the benchmark
level of 74% (dotted line), the effect is moderately sensitive for single-point
delivery and mildly sensitive for continuous delivery.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

1

∞

1 – Single-point delivery
∞ – Continuous delivery

Figure 6: Sensitivity of BUVR to improvement in productivity.

1

∞

1 – Single-point delivery
∞ – Continuous delivery

Figure 7: Sensitivity of BUVR to improvement in rework speed.

SENSITIVITY OF BUVR TO IMPROVEMENT IN DEFECT RATE:
Figure 8 illustrates the sensitivity of the results to the level of improvement in
defect rate (β) achieved by pairs over soloists. The percentage improvement is

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

expressed relative to the adopted benchmark defect rate of 0.00585
defects/LOC, the value used in the model Solo in the main part of the analysis.
Unlike in rework speed and productivity, an improvement in defect rate
corresponds to smaller, not larger, values of β. A maximum improvement of
100% corresponds to a defect rate of zero.

Overall, BUVR is initially moderately sensitive to changes in defect rate,
and then becomes increasingly sensitive to it. Around the benchmark
improvement level of 60%, the effect is significant. A deviation from this
behavior occurs around the 85% neighborhood for single-point delivery. In this
neighborhood, the BUVR peaks and then starts to decline. The peaking effect is
attributed to the increasing double labor cost of pairs finally overtaking the
diminishing savings from reduced rework effort. The peaking effect is absent in
continuous delivery, because the advantage of incremental value realization is
persistent.

1

∞
1 – Single-point delivery
∞ – Continuous delivery

Figure 8: Sensitivity of BUVR to improvements in defect rate.

 We conclude the sensitivity analysis with a note on the impact of less-than-
perfect defect coverage. When defect coverage is less than 100%, but constant,
the effective defect rate will be lower than the actual defect rate, but by the same

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

factor for both pairs and soloists. This leaves unaffected the ratio of the pair
defect rate to that of the soloist. Consequently, the percentage improvement in
β, hence the value of BUVR, remains the same.

CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

Quantitative analyses demonstrate the potential of pair programming as an
economically viable alternative to individual programming. We compared the
two practices under two different value realization models. In each case, we
found that pair programming creates superior economic value based on data
from a previous empirical study and other statistics reported in the general
software engineering literature. Although the techniques and concepts employed
in the analysis are standard, their use in this particular type of assessment,
especially the incorporation of value realization considerations into a breakeven
analysis, is novel.

In both practices, net value is maximized when the development activity
realizes value incrementally, for example, through frequent releases. This
observation is consistent with the general engineering economics intuition [20].
The more interesting question that was addressed by the analysis is how fast a
development activity can afford to spend before the rate of spending overtakes
the benefits of early value realization.

The results have low sensitivity to the two exogenous parameters: output
and discount rate. Neither parameter was found to be a significant determining
factor. Among the endogenous parameters, productivity and rework speed
exhibit mild to moderate sensitivity, but neither of these parameters alone
appears to be powerful enough to affect the comparison.

The findings were particularly sensitive to defect rate, the third endogenous
parameter. However, everything else being the same, the advantage of pair
programming persists until the defect rate ratio falls significantly, from the
benchmark level of 60% down to 20%. The sensitivity to defect rate is not
particularly surprising, since the case for pair programming largely hinges on a
significant improvement in code quality.

Our observation confirms that further studies of pair programming should
focus on measuring and comparing defect rates.

The analyses performed relied on several assumptions. The main ones were:
1. exclusion of overhead costs;
2. instant value realization upon the delivery of defect-free code;

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

3. quality bias, due to rework effort being regarded as wasted effort;
4. ability to deliver a product in arbitrarily small increments;
5. a perfectly efficient defect discovery process.

 Assumptions 2 and 5 abstract away from context-specific and
environmental factors common to both practices of which the work unit has no
or little control. Assumption 3 is important to retain because removing it would
create a disincentive for poor quality. These three assumptions apply to both pair
programming and solo programming equally, and were necessary for a context-
independent comparison of the two practices. Assumptions 1 and 4 may
however be relaxed at the expense of additional model complexity.

Other considerations include following:
• The disconnect between realized value and business value. We used

earned value rather than business value as a proxy for benefits. The
inclusion of business value would be meaningful only in concrete
contexts because business value depends on project- and market-related
factors. Business value can be tackled by redefining realized value
independently of earned value, in terms of a separate exogenous
parameter. An earlier version of the economic model adopted this
view, however, we did not find it suitable for a generic analysis.

• Treatment of more realistic value realization models that fall between
the two extremes addressed. Intermediary models can be tackled by
breaking up development along an orthogonal dimension with two
components: initial release and subsequent releases. The frequency of
subsequent releases can be used as a sensitivity parameter to determine
an optimal release cycle. Again, this kind of treatment is most useful if
different alternatives are evaluated in a concrete context, rather than for
a general comparison.

• More sophisticated characterizations of the empirical models.
Sensitivity analyses provide much insight when the empirical models
are sufficiently well described by the mean values of the parameters
involved. When these parameters are subject to high-levels of
variability from one organization or project to another or within a
single project, and the parameters exhibit mutual dependencies, their
joint distributional properties become important. If empirical data can
be used to infer these properties, probabilistic analyses can be
performed at the lowest level. Sensitivity analyses can then be

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

performed at the next level to gauge the impact of errors in the
descriptive parameters of the hypothesized distributions.

• Second-order interactions among individual practices. It is possible for
the substitution of one practice for another (in this case, pair
programming for solo programming) to have unintended, but
systematic effects in the rest of the practices shared by two
development processes (in this case, CSP and PSP). Such second-order
interactions could amplify or dampen the observations. Although the
University of Utah study did not report effects of this kind, it is still
possible that they existed, but were not detected by the study. Second-
order interactions are typically complex, subtle, and difficult to reveal.
For example, it is possible that pair programming is more effective
when practiced in conjunction with test-driven development, another
central agile development practice. Future experiments can be
designed specifically to reveal these hidden effects.

In conclusion, the potential of pair programming as a viable alternative to
traditional solo programming cannot be dismissed on economic grounds.
However, in interpreting our findings, the reader should focus on the general
behavioral properties of the comparison metrics defined, and not on their
specific values. It should be kept in mind that the models used made several
assumptions to control the underlying complexity while allowing for meaningful
analysis. In addition, the analyses performed relied on existing data of mixed
origin, with no independent verification of consistency among the different
sources. We remain cautious of the portability of these figures since we have no
information on the software development methods of the companies involved in
those statistics. It would be beneficial to revise the models and repeat the
analyses following further experimentation and assessment of pair programming
with professional software engineers.

REFERENCES

1. NOSEK, J.T., "The Case for Collaborative Programming", Communications of the
ACM, No. 3, March 1998, pp. 105-108.

2. WIKI, Programming In Pairs, in Portland Pattern Repository, June 29, 1999.
http://c2.com/cgi/wiki?ProgrammingInPairs

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

3. COCKBURN, A. and L. WILLIAMS, The Costs and Benefits of Pair Programming, in
Extreme Programming Examined, G. Succi and M. Marchesi (eds), Addison
Wesley: Boston, MA, 2001, pp. 223-248.

4. WILLIAMS, L., R. KESSLER, W. CUNNINGHAM, and R. JEFFRIES, "Strengthening the
Case for Pair-Programming", IEEE Software, Vol. 17, No. 4, July/August 2000, pp.
19-25.

5. COPLIEN, J.O., A Development Process Generative Pattern Language, in Pattern
Languages of Program Design, J.O. Coplien and D.C. Schmidt (eds), Addison-
Wesley: Reading, MA, 1995, pp. 183-237.

6. CONSTANTINE, L.L., Constantine on Peopleware, Yourdon Press Computing Series,
E. Yourdon (ed.), Yourdon Press: Englewood Cliffs, NJ, 1995.

7. AUER, K. and R. MILLER, XP Applied, Addison Wesley: Reading, Massachusetts,
2001.

8. BECK, K., Extreme Programming Explained: Embrace Change, Addison-Wesley:
Reading, Massachusetts, 2000.

9. BECK, K. and M. FOWLER, Planning Extreme Programming, Addison Wesley:
Reading, Massachusetts, 2001.

10. WAKE, W.C., Extreme Programming Explored, The XP Series, K. Beck (ed.),
Addison Wesley: Boston, 2001.

11. SUCCI, G. and M. MARCHESI, Extreme Programming Examined, The XP Series, K.
Beck (ed.), Addison Wesley: Boston, 2001.

12. PALMIERI, D., Knowledge Management through Pair Programming, Master's Thesis,
Department of Computer Science, North Carolina State University, Raleigh, NC,
2002.

13. DUTOIT, A.H., BRUEGGE, BERND, "Communication Metrics for Software
Development", IEEE Transactions on Software Engineering August 1998, pp. 615-
628.

14. WILLIAMS, L.A., The Collaborative Software Process, PhD Dissertation, Department
of Computer Science, University of Utah, Salt Lake City, UT, 2000.

15. HUMPHREY, W.S., A Discipline for Software Engineering, SEI Series in Software
Engineering, P. Freeman, Musa, John (ed.), Addison Wesley Longman, Inc:
Reading, Massachusetts, 1995.

16. COCKBURN, A. and L. WILLIAMS. "The Costs and Benefits of Pair Programming", in
Extreme Programming and Flexible Processes in Software Engineering (XP '2000),
Cagliari, Sardinia, Italy, Addison-Wesley, 2000.

17. ROSS, S.A., Fundamentals of Corporate Finance, McGraw-Hill Series in Finance,
Irwin/McGraw-Hill, 1996.

18. ERDOGMUS, H. "Comparative evaluation of software development strategies based
on Net Present Value", in International Conference on Software Engineering (ICSE)
Workshop on Economics-Driven Software Engineering Research, Los Angeles,
California, 1999.

19. LEVY, L.S., Taming the Tiger: Software Engineering and Software Economics,
Springer Books on Professional Computing, H. Ledgard (ed.), Springer-Verlag:
New York, 1987.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

20. BOEHM, B.W., Software Engineering Economics, Prentice-Hall, Inc.: Englewood
Cliffs, NJ, 1981.

21. ERDOGMUS, H. and J. VANDERGRAAF. "Quantitative Approaches for Assessing the
Value of COTS-centric Development", in Sixth International Symposium on
Software Metrics, Boca Raton, FL, 1999.

22. FAVARO, J.M., K.R. FAVARO, and P.F. FAVARO, "Value-Based Software Reuse
Investment", Annals of Software Engineering, Vol. 5 1998, pp. 5-52.

23. HAYES, W. and J.W. OVER, The Personal Software Process: An Empirical Study of
the Impact of PSP on Individual Engineers, Software Engineering Institute,
Pittsburgh, PA, December 1997. Technical Report CMU/SEI-97-TR-001.

24. BASILI, V.R., F. SHULL, and F. LANUBILE, "Building Knowledge Through Families
of Experiments", IEEE Transactions on Software Engineering, Vol. 25, No. 4, 1999,
pp. 456 - 473.

25. WILLIAMS, L.A. and R.R. KESSLER, "All I Ever Needed to Know About Pair
Programming I Learned in Kindergarten", Communications of the ACM, Vol. 43,
No. 5, May 2000 2000.

26. WILLIAMS, L. and R. KESSLER, Pair Programming Illuminated, Addison Wesley:
Reading, Massachusetts, 2003.

27. JONES, C., Software Quality: Analysis and Guidelines for Success, International
Thomson Computer Press: Boston, MA, 1997.

28. GROSS, N., M. STEPANEK, O. PORT, and J. CAREY, "Software Hell", Business Week,
December 6, 1999, pp. 104-118.

29. RUSSELL, G.W., "Experience with Inspection in Ultralarge-Scale Developments",
IEEE Software, Vol. January 1991 1991, pp. 25-31.

30. COCKBURN, A., Agile Software Development, The Agile Software Development
Series, A. Cockburn and J. Highsmith (ed.), Addison Wesley Longman: Reading,
Massachusetts, 2001.

31. HIGHSMITH, J., Agile Software Development Ecosystems, The Agile Software
Development Series, A. Cockburn and J. Highsmith (ed.), Addison-Wesley: Boston,
MA, 2002.

32. CHRISTENSEN, D.S., "The Costs and Benefits of the Earned Value Management
Process", Acquisition Review Quarterly, Vol. Fall 1998, pp. 373-386.

33. HUMPHREY, W.S., Managing the Software Process, SEI Series in Software
Engineering, N. Habermann (ed.), Addison-Wesley: Reading, Massachusetts, 1989.

34. DELANEY, P.R., J.E. BARRY, and R. NACH, Wiley GAAP 2003: Interpretation and
Application of Generally Accepted Accounting Principles, John Wiley & Sons,
2002.

35. BECK, K. and D. CLEAL, "Optional Scope Contracts",
http://www.xprogramming.com/ftp/Optional+scope+contracts.pdf 1999.

36. ROYCE, W.W. "Managing the development of large software systems: concepts and
techniques", in IEEE WESTCON, Los Angeles, CA, 1970.

37. RISING, L. and N.S. JANOFF, "The Scrum Software Development Process for Small
Teams", IEEE Software, Vol. 17, No. 4, 2000.

THE ENGINEERING ECONOMIST, VOLUME 48, NUMBER 4, 2003

BIOGRAPHICAL SKETCHES

HAKAN ERDOGMUS (Hakan.Erdogmus@nrc.ca) is a senior research officer with
the Institute for Information Technology, National Research Council of Canada.
He holds a Master’s degree in Computer Science from McGill University,
Montreal, and a Ph.D. in Telecommunications from Université du Québec. His
current research is in software economics and agile software development,
focusing on the evaluation of underlying processes and practices. He delivered
several lectures on the economics of agile software development. Dr. Erdogmus
is co-editor of Advances in Software Engineering, published by Springer.

LAURIE WILLIAMS (williams@csc.ncsu.edu) is an assistant professor of
Computer Science at North Carolina State University. She received her
undergraduate degree in Industrial Engineering from Lehigh University. She
also received an MBA from Duke University and a Ph.D. in Computer Science
from the University of Utah. Prior to returning to academia to obtain her Ph.D.,
she worked in industry, for IBM, for nine years in engineering and software
development technical and management positions. She was a founder of the
first North American conference on agile software development methodologies,
XP Universe/Agile Universe. She is also the author of Pair Programming
Illuminated and an editor of Extreme Programming Perspectives.

ERRATUM: The 90% pair value of passing acceptance tests from University of
Utah study was later revised down to 85%. This increases the value of the defect
rate parameter for the model Pair from 0.00234 to 0.00351, resulting in an
efficiency value of 1.26 rather than 1.34, and ultimately a BUV ratio of about
1.30 rather than 1.73 under the continuous delivery model. The 5% error is
important because BUVR is very sensitive to the parameter beta, as Fig. 8
demonstrates.

