
16	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

W
hat if someone argued that one of your
basic conceptions about how to de-
velop software was misguided? What
would it take to change your mind?

That’s essentially the dilemma
faced by advocates of test-driven de-

velopment (TDD). The TDD paradigm argues
that the basic cycle of developing code and then
testing it to make sure it does what it’s supposed
to do—something drilled into most of us from the
time we began learning software development—
isn’t the most effective approach. TDD replaces
the traditional “code then test” cycle. First, you
develop test cases for a small increment of func-
tionality; then you write code that makes those
tests run correctly. After each increment, you
refactor the code to maintain code quality.1

TDD proponents assert that frequent, incre-
mental testing not only improves the delivered
code’s quality but also generates a cleaner design.
If you haven’t already tried TDD, what data might
convince you to try radically changing your soft-
ware development approach to get those benefits?
Would the experience of a recognized expert help?

In this column, we offer both data regarding
TDD’s effectiveness and the critique of an expert
based on applying it in the field.

Compiling the Evidence
Our data comes from a study conducted by five of
us—namely, Burak Turhan, Lucas Layman, Mad-
eline Diep, Forrest Shull, and Hakan Erdogmus.2
The study was based on a systematic literature
review to aggregate demonstrated evidence about

TDD’s effectiveness. The review searched the lit-
erature from 1999, looking for any study that
provided some quantitative assessment of TDD’s
effectiveness compared to traditional software
development. The search results were filtered for
quality, which left 22 published articles that de-
scribed 33 unique studies.

The review distinguished three types of studies:

■■ Controlled■ experiments compared TDD to
traditional development under controlled con-
ditions to minimize the effects of confound-
ing factors, such as developer experience or
the type of software being developed.

■■ Pilot■ studies reported comparisons under
somewhat realistic conditions but tended to be
of short duration or on small problems.

■■ Industry■studies reported comparisons regard-
ing TDD’s effectiveness on real projects being
developed for a customer under real commer-
cial pressures.

Reasoning that more rigorous studies might be
fewer in number but should be more trustworthy,
the reviewers defined a category of “high rigor”
studies that met the following conditions:

 ■ The subjects included only graduate students
or professionals—that is, people who are more
experienced than the general population and
who should behave the most like developers in
industry or government organizations.

 ■ The study used a TDD process description
that matched the textbook definition and

Forrest Shull, Grigori Melnik, Burak Turhan, Lucas Layman,
Madeline Diep, and Hakan Erdogmus

What Do We Know about
Test-Driven Development?

voice of evidence
E d i t o r : F o r r e s t S h u l l ■ F r a u n h o f e r C e n t e r f o r E x p e r i m e n t a l S o f t w a r e E n g i n e e r i n g ,

M a r y l a n d ■ f s h u l l @ f c - m d . u m d . e d u

	 November/December 2010 I E E E S O F T W A R E 	 17

VOICE OF EVIDENCE

ensured process conformance to some
degree—that is, TDD was in fact the
process being studied.

 ■ The size of the development task and
the number of developers working on
it were significant—specifically, the
study involved at least several hundred
person-hours of effort.

We report the literature review results for
three quality dimensions: delivered qual-
ity, internal code quality, and productivity.

For each dimension, we augment the
study data with commentary from Grigori
Melnik, senior program manager for Mi-
crosoft’s Patterns and Practices group. His
software engineering experience includes
large e-business engineering projects for
both corporations and government agen-
cies, and he has adopted TDD in prac-
tice as a development project manager.
Grigori is also a respected researcher, who
has done his own prior analyses of TDD’s
effectiveness.3

Evidence about
Delivered Quality
Advocates of TDD argue that it deliv-
ers higher-quality software. The quality
ensues from working on well-specified
tasks, using frequent regression testing,
and finding errors earlier in the rapid
feedback cycle.

The Data
To examine evidence demonstrating this
effect, we grouped all studies that re-
ported results relating to the delivered
software’s perceived quality. Altogether,
21 studies reported metrics such as the
percentage of the test set passed by the
final product, the defect density or num-
ber of defects uncovered per test, or the
quality assurance effort needed to deliver
a satisfactory product.

Figure 1 summarizes the evidence re-
porting whether TDD did better or worse
than the comparison approach or showed
no substantial difference.

The results from pilot and industrial
studies tended to support TDD’s supe-
rior quality, with 12 studies showing
better results for TDD and none show-
ing worse. The evidence from controlled
experiments was inconclusive: one study
showed better results and two showed
worse.

However, when we excluded less rig-
orous studies (results appearing in the
darker area of Figure 1), the picture is
muddier: five studies favored TDD’s
claims and two opposed it.

From these results, we concluded that
moderate evidence exists for the argu-
ment that TDD tends to improve the
code’s external quality.

The Expert
Grigori agreed with our conclusion. In
his experience, TDD leads to better soft-
ware by helping developers think through
the system design and so prevent bugs. As
with unit testing, TDD doesn’t replace
skillful testers, but it does free them to
find serious bugs in areas related to end-
to-end scenarios and nonfunctional sys-
tem characteristics.

Grigori also felt that TDD impacts
software quality by helping fight sloppi-
ness and encouraging coding discipline
in the development team. He described
working with a young, energetic pro-
grammer whose work unfortunately in-
cluded many mistakes. Following TDD
rigorously helped the programmer be-
come more intentional in his work, think-
ing through the functionality he wanted
to add. TDD doesn’t just require skill and
discipline; it also helps develop them.

Grigori saw an important metric miss-
ing from the literature—specifically,
mean time to fix (MTTF). TDD’s effects
show up strongest in this metric. In his
experience, TDD system problems are
easier to diagnose and debug. The avail-
ability of the TDD regression test suite
also helps immensely in this regard.

Evidence about
Internal Quality
TDD advocates often cite its incremen-
tal nature and quick quality feedback as
a driver of not only better code quality
but also increased system modularity. To-
gether with frequent refactoring, these de-
velopment side effects should lead to more
comprehensible, better organized, and
more maintainable code.

The Data
Figure 2 shows our aggregation of 14
studies with results touching on code
quality. It includes studies reporting
object-oriented structure metrics such as
coupling and cohesion, code-complexity
measures, and code-density metrics that
look at the size of modules or the LOCs
required to implement a feature.

The overall picture is quite mixed.
Across all studies, a small majority (6.5
studies) showed TDD performing bet-
ter versus 3.5 that showed it perform-
ing worse. However, when we look only
at the highest-rigor studies, the picture
is exactly balanced, with 2.5 studies on
each side of the issue.

At an aggregate level, then, we have to
say that TDD shows no consistent effect
on internal code quality.

The Expert
In Grigori’s experience, however, TDD’s
effects on internal code quality are
strongly positive and not at all mixed.
He was skeptical of our results, saying
that it would take a lot of high-quality
studies to make him change his mind.

Teams experienced with TDD

TDD better
(high-rigor

studies)
No

difference

TDD worse
(high-rigor

studies)

TDD better
(other

studies)Study type

TDD worse
(other

studies)

√√√ √√√

√√√√√ √√√

√√√√√√√

Controlled experiment

Pilot study

Industrial use

5 68Totals 2 0

Figure 1. Summary of studies examining test-driven developments’s effect
on delivered software quality. The majority of studies (13) found TDD to be
beneficial.

18	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

VOICE OF EVIDENCE

produce code that’s cleaner overall, with
less coupling, and thus easier to main-
tain. Testers can easily look into any part
of the code base. Furthermore, TDD re-
quires developers to expose the inter-
faces, which makes the system more eas-
ily extensible.

On Grigori’s current project, his team
now uses only TDD, but this wasn’t al-
ways so. He reports that developing incre-
ments of the same system without TDD
was significantly more painful. When the
team started following TDD more rigor-
ously, the internal quality improved—
both in his subjective assessments of how
clean the code is and objectively in the
number of bug reports. Even the test code
is cleaner because the team cares about
making tests readable. Of course, Grig-
ori added the caveat that team maturity
might be a confounding factor; his team
and system were both quite mature by the
time the switch to TDD occurred.

Evidence about Productivity
Many potential adopters worry about
a productivity hit when committing to
TDD. Like any new practice, TDD will
involve a learning curve. But beyond that,
the proliferation of test cases associated
with TDD must be managed and main-
tained and could therefore require more
effort than a traditional approach.

The Data
Figure 3 summarizes results from the
25 studies we found that addressed pro-
ductivity in some way—for example, by
measuring development or maintenance
effort, effort per LOC, or effort per
feature.

The results differed drastically in dif-
ferent study types. Experiments tended to
favor TDD, industrial studies tended to
favor the traditional approach, and pilot
studies were mixed. These broad results
weren’t affected by study rigor.

We’re not sure what to make of the
different messages coming from different
study types. However, we can at least say
that managing TDD’s larger test suites
hasn’t shown a consistent negative effect
on productivity.

The Expert
Grigori says the learning curve impacts
productivity in the beginning. He recom-
mends addressing the issue by pairing an
inexperienced programmer with some-
one more experienced.

But taking the learning curve out of
the picture and looking at longer-term
effects, Grigori sees the productivity pic-
ture dependent on what you measure.
(This may be one explanation for the
muddled picture when we group results
from multiple studies.) If the metric is
“total lines of code written,” TDD de-
velopers may perform better than many
would expect. Grigori felt that his TDD
teams wrote less code, even including the
code to cover all the test cases. For one
thing, the code required less rework. Fur-
thermore, putting more upfront thought
into what you’re developing can help you
see that what you’re about to write isn’t
really needed after all. The result is less
bloated systems.

Finally, productivity measures must
also account for maintenance time to
give a fair overview of the real effects.
In Grigori’s experience, code written in
TDD style is much easier to maintain,
leading to life-cycle cost savings com-
pared to non-TDD development. Ac-
counting for MTTF in the productivity
measure would likely give TDD a dis-
tinct advantage. It’s too easy to procrasti-
nate—or forget—writing the test cases in
test-last development, and the test cases
make debugging the system a much easier
task. By its nature, TDD helps you more
quickly pinpoint code problems, and the
regression test suite helps you make a
good-quality fix much more quickly.

His experience has been that his TDD
teams can find and fix bugs much faster
than other teams.

T he one major discrepancy we found
between the data and Grigori’s ex-
perience was related to internal code

quality. This discrepancy might reflect
variations across different software do-

TDD better
(high-rigor

studies)

No
difference

TDD worse
(high-rigor

studies)

TDD better
(other

studies)Study type

TDD worse
(other

studies)

√√√

√√√√√

√

√

√√

Controlled experiment

Pilot study

Industrial use

6 64Totals 4

√ √√√√

√√√

5

√√√√√

Figure 3. Summary of studies examining the effect of TDD on productivity.
The results are diverse across different types of study.

TDD better
(high-rigor

studies)
No

difference

TDD worse
(high-rigor

studies)

TDD better
(other

studies)Study type

TDD worse
(other

studies)

√√√

√ ~~ ~

√√√

Controlled experiment

Pilot study

Industrial use

2.5 44Totals 2.5

√

√ ~

1

~ ~√√

Figure 2. Summary of studies examining TDD’s effects on internal code
quality. The studies showed mixed results. A “~” represents a single study
in which some metrics favored TDD and others favored the comparison
approach. Such studies are counted as ½ when totaling columns.

	 November/December 2010 I E E E S O F T W A R E 	 19

VOICE OF EVIDENCE

mains and in specifi c business goals and
team experience. Overall, however, it
highlights the need for carefully moni-
tored pilots of a technology to aug-
ment surveys of its potential risks and
benefi ts.

Because we based this article on re-
search fi ndings, it seems only fair to give
Grigori the last word. He and many TDD
advocates fi nd it useful to view TDD as a
design rather than a development tech-
nique. This is because, in practice, TDD
drives developers to think about how the
system should be organized. The benefi ts
related to better code testing are a nice
side effect, but not the main point.

Grigori’s stories come with the moral
that TDD helps developers be more re-
fl ective and thoughtful about the tests
that they do write, which is a good route
to big returns on investment.

References
 1. K. Beck, Test■Driven■Development:■By■Ex-

ample, Addison-Wesley, 2002.
 2. B. Turhan et al., “How Effective Is Test Driven

Development?” Making■Software:■What■Re-
ally■Works,■and■Why■We■Believe■It, A. Oram
and G. Wilson, eds., O’Reilly Media, 2010,
pp. 399–412.

 3. R. Jeffries and G. Melnik, “Guest Editors’
Introduction: TDD—The Art of Fearless
Programming,” IEEE■Software, vol. 24, no. 3,
2007, pp. 24–30.

Forrest Shull is a senior scientist at the University of
Maryland’s Fraunhofer Center for Experimental Software
Engineering and director of its Measurement and Knowledge
Management division. Contact him at fshull@fc-md.umd.edu.

Grigori Melnik is a senior program manager in the
Patterns and Practices group at Microsoft. Contact him at
http://blogs.msdn.com/agile.

Burak Turhan is a postdoctoral researcher in the
University of Oulu’s Department of Information Processing
Science. Contact him at turhanb@computer.org.

Lucas Layman is a scientist at the University of
Maryland’s Fraunhofer Center for Experimental Software
Engineering. Contact him at llayman@fc-md.umd.edu.

Madeline Diep is a PhD student at the University of
Nebraska-Lincoln’s Department of Computer Science and
Engineering. Contact her at mhardojo@cse.unl.edu.

Hakan Erdogmus is an independent consultant,
adjunct professor of computer science at the University of
Calgary, and editor in chief of IEEE Software. Contact him at
hakan.erdogmus@computer.org.

Erratum
The Voice of Evidence column (“Managing Variability in Software Product Lines”
by Muhammad Ali Babar, Lianping Chen, and Forrest Shull) in IEEE Software’s
May/June 2010 issue presented a categorization of dif� culties and proposed
solutions in dealing with variability in software product lines. The article should
have noted that part of the work reported in the column was published in a previ-
ous article by Lianping Chen, Ali Babar, and Nour Ali, “Variability Management
in Software Product Lines: A Systematic Review,” in Proceedings of the 13th Inter-
national Software Product Line Conference, ACM Press, Aug. 2009, pp. 81–90.
Nour Ali of Lero, the Irish Software Engineering Research Centre, participated in
the joint research that led to the development of the categorization reported in
the prevoius article. That work was funded by Science Foundation Ireland grant
03/CE2/I303_1. We apologize for the omission.

7 Things You Need to Know About the
Next 7 Years in Architecture.

Submission Deadline: November 30, 2010

in collaboration with

Service-Oriented Architecture
(SOA) and Cloud Computing

Architectural Knowledge
Management

Architecting to Meet Tomorrow’s
Global Challenges

Model-Driven Architecting

Architecture, Agile Development,
and Business Agility

Soft Skills for Architects

The SEI Architecture Technology User Network (SATURN) Conference brings together experts
to exchange best architecture-centric practices in developing, acquiring, and maintaining
software-reliant systems.

www.sei.cmu.edu/saturn/2011

Architecting the FutureSeventh Annual SEI Architecture
Technology User Network ConferenceSATURN 2011

Architecture is Not Just
for Architects

May 16-20, 2011 | San Mateo County, California

